Abstract

In regression analysis, it is relatively necessary to have a correlation between the response and explanatory variables, but having correlations amongst explanatory variables is something undesired. This paper focuses on five methodologies for handling critical multicollinearity, they include: Partial Least Square Regression (PLSR), Ridge Regression (RR), Ordinary Least Square Regression (OLS), Least Absolute Shrinkage and Selector Operator (LASSO) Regression, and the Principal Component Analysis (PCA). Monte Carlo Simulations comparing the methods was carried out with the sample size greater than or equal to the levels considered in most cases, the Average Mean Square Error (AMSE) and Akaike Information Criterion (AIC) values were computed. The result shows that PCR is the most superior and more efficient in handling critical multicollinearity problems, having the lowest AMSE and AIC values for all the sample sizes and different levels considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.