Abstract

New scenarios in diabetes treatment have been opened in the last ten years by continuous glucose monitoring (CGM) sensors. In particular, Non-Invasive CGM sensors are particularly appealing, even though they are still at an early stage of development. Solianis Monitoring AG (Zürich, Switzerland) has proposed an approach based on a multisensor concept, embedding primarily dielectric spectroscopy and optical sensors. This concept requires a mathematical model able to reconstruct the glucose concentration from the 150 channels measured with the device. Assuming a multivariate linear regression model (valid and usable for different individuals), the aim of this paper is the assessment of some techniques usable for determining such a model, namely Ordinary Least Squares (OLS), Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO). Once the model is identified on a training set, the accuracy of prospective glucose profiles estimated from "unseen" multisensor data is assessed. Preliminary results obtained from 18 in-clinic study days show that sufficiently accurate reconstruction of glucose levels can be achieved if suitable model identification techniques, such as LASSO, are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.