Abstract

The extreme value distribution was developed for modeling extreme-order statistics or extreme events. In this study, we discuss the distribution of the largest extreme. The main objective of this paper is to determine the best estimators of the unknown parameters of the extreme value distribution. Thus, both classical and Bayesian methods are used. The classical estimation methods under consideration are maximum likelihood estimators, moment’s estimators, least squares estimators, and weighted least squares estimators, percentile estimators, the ordinary least squares estimators, best linear unbiased estimators, L-moments estimators, trimmed L-moments estimators, and Bain and Engelhardt estimators. We also propose new estimators for the unknown parameters. Bayesian estimators of the parameters are derived by using Lindley’s approximation and Markov Chain Monte Carlo methods. The asymptotic confidence intervals are considered by using maximum likelihood estimators. The Bayesian credible intervals are also obtained by using Gibbs sampling. The performances of these estimation methods are compared with respect to their biases and mean square errors through a simulation study. The maximum daily flood discharge (annual) data sets of the Meriç River and Feather River are analyzed at the end of the study for a better understanding of the methods presented in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.