Abstract
Tyrosine kinase inhibitors (TKIs) are associated with kidney function deterioration. A shift is ongoing towards glomerular filtration rate (GFR) equations based on other protein markers, such as cystatin C (CSTC) and β-trace protein (BTP). We evaluated various GFR equations for monitoring of kidney function in actively treated oncology patients. We monitored 110 patients receiving a TKI. Blood and urine were collected during therapy. Serum analysis included creatinine (Cr), CSTC and BTP; for consequent GFR determination. Urine was analysed for protein, albumin, immunoglobulin G, and α-1-microglobulin. A similar analysis was done in a patient subgroup receiving immune checkpoint inhibitors (ICI) as prior or subsequent line of therapy. Cr remained constant during TKI treatment (P=0.7753), whereas a significant decrease in CSTC (from week 2 onward, P<0.0001) and BTP (at weeks 2 and 4, P=0.0100) were noticed. Consequently, GFR estimations, using CSTC and/or BTP as a biochemical parameter, showed an apparent increase in GFR, whereas this was not observed for Cr-related GFR estimations. As a result, the GFR gap (ΔGFR) was significantly different from week 2 onward between Cr-based and CSTC-based GFR and between BTP-based and CSTC-based GFR. Glomerular damage was noticed with significant increase in urine protein-to-creatinine ratio, albumin-to-creatinine ratio and immunoglobulin G (all P<0.0001). No change in α-1-microglobulin was seen. ICI treatment had no effect on Cr (P=0.2262), CSTC (P=0.7341), and BTP concentrations (P=0.3592). GFR equations, in which CSTC is incorporated, fail to correctly estimate the GFR in oncology patients treated with TKIs. As TKI-treated patients show clear signs of glomerular injury, further assessment is needed on how to correctly monitor the kidney function in actively treated oncology patients.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have