Abstract

IntroductionRadiolabeled exendin-4 (Ex4) derivatives are used to target the glucagon-like peptide-1 receptor (GLP-1R) for the clinical diagnosis of insulinomas, a rare type of neuroendocrine tumor. Gallium-68 is an ideal diagnostic nuclide for this application and a study evaluating an exendin-4-NODAGA conjugate is currently underway. However, in complexion with the chelator DFO, its in vivo stability has been a matter of dispute. The aim of this work was to directly compare [68Ga]Ga-Ex4NOD with [68Ga]Ga-Ex4DFO in vitro and in vivo.MethodsIn our approach, we directly compared N′-[5-(acetyl-hydroxy-amino)pentyl]-N-[5-[3-(5-aminopentyl-hydroxy-carbamoyl)propanoylamino]pentyl]-N-hydroxy-butane diamide (desferriox-amine B, DFO) and 2-(4,7-bis (carboxymethyl)-1,4,7-triazonan-1-yl) pentanedioic acid (NODAGA) conjugated to exendin-4 in vitro and in vivo. We radiolabeled the peptides with gallium-68, followed by HPLC quality control. In vitro characterization was performed in CHL cells overexpressing the GLP-1R and in vivo studies were conducted with CD1 nu/nu mice carrying tumors derived from these cells.ResultsWe found that both peptides could be radiolabeled with a molar activity of about 9.33 MBq/nmol without further purification. They internalized equally well into GLP-1R-expressing cells and their IC50 was similar with 15.6 ± 7.8 nM and 18.4 ± 3.0 nM for [natGa]Ga-Ex4NOD and [natGa]Ga-Ex4DFO, respectively. In vivo, [68Ga]Ga-Ex4NOD accumulated more in all tissue, while [68Ga]Ga-Ex4DFO exhibited a more favorable target-to-kidney ratio.Conclusion and relevanceDFO is a suitable chelator for the radiolabeling of exendin-4 derivatives with gallium-68 for in vitro and preclinical in vivo studies. DFO performed better in vivo due to its significantly lower kidney accumulation (p < 0.0001). It was also found to be stable in vivo in mice, contrary to earlier reports. Based on our results, the DFO chelating system in combination with exendin-4 would be an interesting option for clinical imaging of insulinomas.

Highlights

  • Radiolabeled exendin-4 (Ex4) derivatives are used to target the glucagon-like peptide-1 receptor (GLP-1R) for the clinical diagnosis of insulinomas, a rare type of neuroendocrine tumor

  • In vitro characterization was performed in Chinese hamster lung (CHL) cells overexpressing the GLP-1R and in vivo studies were conducted with CD1 nu/nu mice carrying tumors derived from these cells

  • We found that both peptides could be radiolabeled with a molar activity of about 9.33 MBq/nmol without further purification. They internalized well into GLP-1R-expressing cells and their Half-maximal inhibitory concentration (IC50) was similar with 15.6 ± 7.8 nM and 18.4 ± 3.0 nM for [natGa]Ga-Ex4NOD and [natGa]Ga-Ex4DFO, respectively

Read more

Summary

Introduction

Radiolabeled exendin-4 (Ex4) derivatives are used to target the glucagon-like peptide-1 receptor (GLP-1R) for the clinical diagnosis of insulinomas, a rare type of neuroendocrine tumor. Insulinomas, a form of neuroendocrine tumors originating from pancreatic β-cells and are usually benign. Insulinomas belong to the functional type of pancreatic neuroendocrine tumors (PNET) as they secrete insulin (Burns and Edil 2012). Due to this autonomous insulin secretion, hypoglycemia is a major concern in patients and the complete surgical removal of such tumors is the favored treatment (Burns and Edil 2012). Insulinomas generally express highly and the glucagon-like peptide-1 receptor (GLP-1R) as they are of β-cell origin (Reubi and Waser 2003). All of them are clinically used in non-radiolabeled form for the management of type 2 diabetes (Aroda 2018)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call