Abstract

The present paper describes a comparison of the efficiency of different types of rotors used in the refining of aluminium melt at a foundry degassing unit (FDU). Physical modelling was used to obtain data for six different rotor types under defined experimental conditions. In order to evaluate the data from the physical model, an evaluation method based on the interpolation of degassing curves was developed in such a way that the resulting characteristic can be expressed by a single parameter. Using the new methodology, the datasets were replaced by a single dimensionless parameter, a, which characterizes the rotor performance at a given gas flow rate. Based on the comparison of these performance parameters, it was possible to mutually compare the rotor efficiency depending on the selected conditions. The comparison is also demonstrated on the expected degassing time to a certain required concentration. Based on the physical model results, the study found that rotor D had the highest degassing efficiency, followed by rotors F and A. Rotors B and E had similar efficiency at a flow rate of 17 Nl·min−1. However, rotor B showed better efficiency at higher inert gas flow rates (19 and 21 Nl·min−1), while rotor E showed better efficiency at lower flow rates (13 and 15 Nl·min−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call