Abstract
• Irradiance can be used as a direct reference generator to avoid tracking oscillations. • Extracting the parasitic resistances in Single Diode Model can assess aging. • Solar panel maximum current is directly proportional to irradiance variations. • AdaBoost is sensitive to noisy datasets and extreme outliers. The intermittent nature of the output power of photovoltaic (PV) systems, in addition to the fast-varying solar irradiance, has prompted the development of fast, accurate, and reliable forecasting techniques. This paper presents a comparative study of five ensemble machine learning methods based on bootstrap aggregating and gradient boosting for PV applications, namely AdaBoost, LightGBM, XGBoost, Random Forest, and CatBoost. A dataset of fast-varying environmental conditions was collected, and the terminal current of the experimental setup was augmented by applying a mathematical model, along with an evolutionary algorithm to extract the parasitic resistances found in the Single Diode Model (SDM) to accommodate for the aging effect. The mathematical model was evaluated for several irradiance and temperature levels against manufacturer Standard Test Conditions (STC), and then variations of environmental conditions were adjusted based on the manufacturer datasheet. CatBoost showed the lowest overall absolute error distribution (with respect to the mean and standard deviation) of all methods, and the best performance in terms of the absolute error (0.25%) and its standard deviation (0.85%) relative to the mathematical model. The AdaBoost method had the highest absolute error (34.5%) and a standard deviation of (15.8%). After hyperparameters tuning, CatBoost still outperformed other methods and showed consistency of high accuracy above 99% in performance with respect to a testing dataset, in addition, to having the largest area under the curve using the trapezoidal rule. Therefore, the CatBoost prediction method is expected to be an effective technique for maximum power point tracking schemes under fast-varying environmental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.