Abstract
This paper gives a systematic comparison of different state–of–the–art modeling approaches and the corresponding parameter identification processes for a self–balancing vehicle. In detail, a nonlinear grey box model, its extension to consider friction effects, a parametric black box model based on regression neural networks, and a hybrid approach are presented. The parameters of the models are identified by solving a nonlinear least squares problem. The training, validation, and test datasets are collected in full–scale experiments using a self–balancing vehicle. The performance of the different models used for ego–motion prediction are compared in full–scale scenarios, as well. The investigated model architectures can be used to improve both, simulation environments and model–based controller design. This paper shows the upsides and downsides arising from using the different modeling approaches. Videos showing the self–balancing vehicle in action are available at: https://tinyurl.com/mvn8j7vf
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.