Abstract

We constructed two types of terahertz (THz) spectrometers with automatic scanning control based on the difference frequency generation method by the excitation of the phonon-polariton mode in GaP. The pulsed THz wave spectroscopic systems were based on an optical parametric oscillator and Nd: YAG laser sources having a frequency resolution of 1.5 GHz, and on Cr:fosterite sources with a resolution of 20 GHz. Following these, we recently constructed a continuous wave (CW) THz wave spectroscopic system with laser diode excitation. One of the advantages of the CW THz wave spectrometer is its wide frequency tuning range with fine frequency resolution of < 8 MHz. In this study, we compare both types of spectrometers (pulsed versus CW) to show the characteristics of each system in terms of frequency resolution. The absorption spectra of a non-deformed white polyethylene crystal and ultra-high molecular weight polyethylene with/without deformation are measured by using the CW THz wave spectrometer and pulsed THz wave spectrometer. The effect of the high-resolution CW THz wave spectrometer is shown based on the THz spectroscopic results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.