Abstract

The density functional theory (DFT) model ONIOM(M06L/6-311++G(2df,2p):UFF was employed to reveal the catalytic activity of Cu(II) in the paddle-wheel unit of the metal-organic framework (MOF)-505 material in the Mukaiyama aldol reaction compared with the activity of Cu-ZSM-5 zeolites. The aldol reaction between a silyl enol ether and formaldehyde catalyzed by the Lewis acidic site of both materials takes place through a concerted pathway, in which the formation of the CC bond and the transfer of the silyl group occurs in a single step. MOF-505 and Cu-ZSM-5 are predicted to be efficient catalysts for this reaction as they strongly activate the formaldehyde carbonyl carbon electrophile, which leads to a considerably lower reaction barrier compared with the gas-phase system. Both MOF-505 and Cu-ZSM-5 catalysts stabilize the reacting species along the reaction coordinate, thereby lowering the activation energy, compared to the gas-phase system. The activation barriers for the MOF-505, Cu-ZSM-5, and gas-phase system are 48, 21, and 61 kJ mol(-1) , respectively. Our results show the importance of the enveloping framework by stabilizing the reacting species and promoting the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.