Abstract
The performance of short block length low-density parity-check (LDPC) codes (both binary and nonbinary) and convolutional codes is compared under the constraint of tight structural delay constraints. Additionally, we use fundamental bounds on block codes and low rate turbo codes to evaluate our results in a broader context. It turns out that—depending on the code rate and given delay—convolutional codes are able to outperform fundamental lower bounds for block codes, yielding a definite result on the question, which codes are superior in this regime. From a break-even point onward, convolutional codes cannot compete with block codes anymore and nonbinary LDPC codes show the best performance. Turbo codes with a short interleaver length show competitive results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have