Abstract

The accurate identification of the characteristics of pollutant sources can effectively prevent the loss of human life and property damage caused by the sudden release of harmful chemicals in emergency situations. Machine learning algorithms, artificial neural network (ANN), support vector machine (SVM), k-nearest neighbour (KNN) and naive Bayesian (NB) classification can be used to identify the location of pollutant sources with limited sensor data inputs. In this study, the identification accuracy of the four above-mentioned machine learning algorithms was investigated and compared, considering the different sensor layouts, eigenvector inputs, meteorological parameters and number of samples. The results show that the collection of pollutant concentrations over an extended period of time could improve identification accuracy. Additional sensors were required to reach the same identification accuracy after the introduction of distributed meteorological parameters. Increasing the number of trained samples by a factor of five improved the identification accuracy of KNN by 22% and that of SVM by 1.7%; however, ANN and NB classification remained basically unchanged. When identifying the release mass of the pollutant source, multiple linear, ANN and SVM regression models were adopted. Results show that ANN performs best, whereas SVM provides the least optimal performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.