Abstract

Abstract Several clustering approaches are evaluated for 1–9-day forecasts using a multimodel ensemble that includes the GEFS, ECMWF, and Canadian ensembles. Six clustering algorithms and three clustering spaces are evaluated using mean sea level pressure (MSLP) and 12-h accumulated precipitation (APCP) for cool-season extratropical cyclones across the Northeast United States. Using the MSLP cluster membership to obtain the APCP clusters is also evaluated, along with applying clustering determined at one lead time to cluster forecasts at a different lead time. Five scenarios from each clustering algorithm are evaluated using displacement and intensity/amount errors from the scenario nearest to the MSLP and 12-h APCP analyses in the NCEP GFS and ERA5, respectively. Most clustering strategies yield similar improvements over the full ensemble mean and are similar in probabilistic skill except that 1) intensity displacement space gives lower MSLP displacement and intensity errors; and 2) Euclidean space and agglomerative hierarchical clustering, when using either full or average linkage, struggle to produce reasonably sized clusters. Applying clusters derived from MSLP to 12-h APCP forecasts is not as skillful as clustering by 12-h APCP directly, especially if several members contain little precipitation. Use of the same cluster membership for one lead time to cluster the forecast at another lead time is less skillful than clustering independently at each forecast lead time. Finally, the number of members within each cluster does not necessarily correspond with the best forecast, especially at the longer lead times, when the probability of the smallest cluster being the best scenario was usually underestimated. Significance Statement Numerical weather prediction ensembles are widely used, but more postprocessing tools are necessary to help forecasters interpret and communicate the possible outcomes. This study evaluates various clustering approaches, combining a large number of model forecasts with similar attributes together into a small number of scenarios. The 1–9-day forecasts of both sea level pressure and 12-h precipitation are used to evaluate the clustering approaches for a large number of U.S. East Coast winter cyclones, which is an important forecast problem for this region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call