Abstract

The paper investigates the feasibility of applying Model Predictive Control (MPC) as a viable strategy to damp wide-area electromechanical oscillations in large-scale power systems. First a fully centralized MPC scheme is considered, and its performances are evaluated first in ideal conditions and then by considering state estimation errors and communication delays. This scheme is further extended into a distributed scheme with the aim of making it more viable for very large-scale or multi-area systems. Finally, a robust hierarchical multi-area MPC scheme is proposed, introducing a second layer of MPC based controllers at the level of individual power plants and transmission lines. Simulations are carried out using a 70-bus test system. The results reveal all three MPC schemes as viable solutions to supplement existing controllers in order to improve the system performance in terms of damping. The hierarchical scheme is the one combining the best performances in nominal conditions and the best robustness with respect to partial component failures and various modeling and measurement errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.