Abstract

The aim of this study was to compare the prediction efficiency of different type of linear calibration models using near infrared (NIR) absorbance spectral data of vegetable oils. The applied model types were the PCA-MLR (principal component analysis-multiple linear regression), the PLS (partial least squares regression), the PCA-ANN (principal component analysis-artificial neural network) and the GA-ANN (genetic algorithm-artificial neural network). The calibrations were executed on the models for the determination of the concentration of oleic acid of vegetable oils and the performances of the different models were determined using external validation. During external validation the built models were tested with vegetable oil samples of which oleic acid content was known and was not included in the calibration sample set. The comparison of the models was executed on the basis of the accuracy of the prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.