Abstract

We present a comparative study of the bandwidth and the sensitivity of the resonance wavelength of long-period gratings (LPGs) to external perturbation fabricated in single-mode fibers (SMFs) and few-mode fibers (FMFs), and their dependencies on the group indices and the dispersion properties of the phase-matched modes. Unlike SMFs, a relatively large core size of FMFs invariably leads to nonuniform index modulation across the fiber cross section under UV exposure, enabling the coupling between modes having dissimilar azimuthal symmetry. Simple analytical formulas for the group/effective index difference, dispersion difference, bandwidth, and wavelength sensitivities are derived for the case of SMFs where light is coupled from the fundamental core mode to the symmetrical cladding modes. Our results show that a two-mode fiber operating at a V-number close to 3 is capable of producing LPGs with broader bandwidth and higher sensitivity as compared with their SMF counterparts, except for a few special cases. Our analyses provide insights into the characteristics of LPGs and facilitate their designs for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.