Abstract
It has been shown that various amino acids will polymerize under plausible prebiotic conditions on mineral surfaces, such as clays and soluble salts, to form varying amounts of oligomers ( n = 2–6). The investigation of these surface reactions required a quantitative method for the separation and detection of these amino acid oligomers at the picomole level in the presence of nanomole levels of the parent amino acid. In initial high-performance liquid chromatography (HPLC) studies using a classical postcolumn o-phthalaldehyde (OPA) derivatization ion-exchange HPLC procedure with fluorescence detection, problems encountered included lengthy analysis time, inadequate separation and large relative differences in sensitivity for the separated species, expressed as a variable fluorescent yield, which contributed to poor quantitation. We have compared a simple, automated, pre-column OPA derivatization and reversed-phase HPLC method with the classical post-column OPA derivatization and ion-exchange HPLC procedure. A comparison of UV and fluorescent detection of the amino acid oligomers is also presented. The conclusion reached is that pre-column OPA derivatization, reversed-phase HPLC and UV detection produces enhanced separation, improved sensitivity and faster analysis than post-column OPA derivatization, ion-exchange HPLC and fluorescence detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have