Abstract

Objectives : Automated machine learning is a recent field of study that automates the process of machine learning model development including proper model selection and optimization. In this study, auto H2O, a novel automated machine learning algorithm, was used to develop a model to predict chlorophyll-a (chl-a).Methods : This study used datasets with different observation frequencies of 1h, 2h, 8h, 24h and 1 week for the development of a machine learning model using an auto H2O algorithm to analyze the effects of measurement frequency of input data on model performance. The effect of the concentration of the input datasets on the performance of the model was also compared by building a model using datasets with observed values of chl-a exceeding 30 mg/m3. The model performance was evaluated using three indices mean absolute error (MAE), Nash-Sutcliffe coefficient of efficiency (NSE) and root mean squared error-observation standard deviation ratio (RSR).Results and Discussion : The MAE, NSE, and RSR of the model using the input data with a measurement frequency of 1h were analyzed as 0.8977, 0.9710, and 0.1704, respectively. The higher the measurement frequency of the input data, the better the performance of the model as the NSE of the model using full data was 0.9710, 0.9552, 0.8856, 0.8396, and 0.7509 for the input datasets with 1h, 2h, 8h, 24h and 1 week observation frequencies, respectively. The difference in model performance according to the difference in measurement frequency was larger for the model using data with the measured value of chl-a exceeding 30 mg/m3, as the NSE was analyzed to be 0.8971, 0.8164, 0.5704, 0.5141, and 0.2052, respectively.Conclusion : The auto H2O model for predicting chl-a showed better model performance as the measurement frequency of the input data increased, and the difference in performance according to the measurement frequency was larger in the range of observed chl-a concentrations that exceeded 30 mg/m3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.