Abstract

Surface charge density can be derived from atomic force microscopy (AFM) by using Derjaguin, Landau, Vervey and Overbeek (DLVO) theory. The sub-micrometer data allows observation of local differences in charge density and changes with time or solution composition, which has interesting applications in crystal growth and inhibition, bone formation and colloid behavior. To calibrate this type of AFM data and verify DLVO assumptions, it has to be correlated with an established technique. We successfully matched AFM derived surface charge densities with zeta potential measurements on a mica surface within one order of magnitude. A reproducible difference between surface charge of the mica substrate exposed to solutions cations with monovalent and divalent charge was also observed. The results provide confidence that the AFM method is valid for obtaining local surface charge information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.