Abstract

5-Hydroxymethylfurfural (HMF) was analyzed in 17 botanical varieties of honey from 12 countries. A recently developed high-performance thin-layer chromatographic (HPTLC) method was limited because of increased matrix effects at higher honey sample loading. Therefore, the method was modified to achieve higher sensitivity and eliminate matrix interference by use of rectangular application combined with a focusing step. The HPTLC results were compared with results from the new spectrophotometric Reflectoquant hydroxymethylfurfural assay. Both methods had quantification limits of 4 mg kg(-1) and were suitable for rapid quantification of HMF in honey at the strictest regulated level of 15 mg kg(-1). Comparable results were obtained for the 17 honey samples, with a mean deviation of 2.9 mg kg(-1) (15%). The optimized HPTLC method was proved to be highly matrix-robust and was validated for the 17 different honey matrices (correlation coefficients ≥0.9994 (n = 6), mean intra-day precision 3.2% (n = 3 within a plate; n = 2 repeated within a day), mean inter-day precision 3.7% (n = 3), mean reproducibility over the whole procedure including sample preparation 4.1% (n = 2), and mean recovery 106.9% (n = 5 different concentrations; n = 4 different honey matrices). Recovery for a range of different application volumes, and thus for different honey matrix loading, differed by only ≤4.2%. HMF results when calculated by use of external calibration and by use of the standard addition method varied by 8.8%. Both revealed that any matrix effect was minor and that the original matrix interference problem was successfully solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.