Abstract

Films of aluminum fluoride (AlF3) deposited by thermal and plasma enhanced atomic layer deposition (PEALD) have been compared using in situ multiwavelength ellipsometry (MWE) and monochromatic x-ray photoelectron spectroscopy (XPS). The AlF3 films were grown using cyclic exposures of trimethylaluminum, hydrogen fluoride, and H radicals from a remote H2 inductively coupled plasma. Films were characterized in situ using MWE and XPS for growth rate, film composition, and impurity incorporation. The MWE showed a growth rate of 1.1 and 0.7 Å per cycle, at 100 °C, for thermal and plasma enhanced ALD AlF3 films, respectively. Carbon incorporation was below the XPS detection limit. The plasma enhanced ALD AlF3 film showed the presence of Al-Al chemical states, in the Al 2p scans, suggesting the presence of Al-rich clusters with a concentration of 14%. The Al-rich clusters are thought to originate during the hydrogen plasma step of the PEALD process. The Al-rich clusters were not detected in thermal ALD AlF3 films using the same precursors and substrate temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call