Abstract

The prediction of the particle number concentration and liquid/ice water content of cloud is significant for many aspects of atmospheric science. However, given the uncertainties in the initial and boundary conditions and imperfections of microphysical schemes, the accurate prediction of these microphysical properties of cloud is still a big challenge. The ensemble approach may be a viable way to reduce forecast uncertainties. In this paper, a large-scale stratiform cloud precipitation process is studied by comparing results of a 10-member ensemble forecast model with aircraft observation data. By means of the ensemble average, the prediction of bulk parameters such as liquid water content and ice water content can be improved in comparison with the control member, but the particle number concentrations are still one to two orders of magnitude less than those from observations. Intercomparison of raindrop size spectra reveals a big distinction between observations and predictions for particles with a diameter less than 1000 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.