Abstract

<p>Two airborne campaigns (AFLUX and MOSAiC-ACA) were conducted in spring 2019 and late summer 2020 to investigate low- and midlevel clouds and related atmospheric parameters in the central Arctic. The measurements aim at better understanding the role of Arctic clouds and their interactions with the surface - open ocean or sea ice - in light of amplified climate change in the Arctic.<br>During the campaigns the Basler BT-67 research aircraft Polar 5 based in Svalbard (78.24 N, 15.49 E) equipped with a comprehensive in-situ cloud payload performed in total 24 flights over the Arctic ocean and in the Fram Strait. A combination of size spectrometers (CDP and CAS) and 2-dimensional imaging probes (CIP and PIP) covering the size range of Arctic cloud hydrometeors from 0.5µm to 6.2mm measured the total particle number concentration, the particle size distribution and the median volume diameter. Liquid water content and ice water content were measured with the Nevzorov bulk probe. The cloud water content (liquid and ice water content) from the Nevzorov probe is compared to the cloud water content derived from particle size measurements using consistent mass-dimension relationships.<br>Here we give an overview of the microphysical cloud properties measured in spring and late summer in high northern latitudes at altitudes up to 4 km. We derive the temperature and altitude dependence of liquid, mixed phase and ice cloud properties and investigate their seasonal variability. Differences in cloud properties above the sea ice and the open ocean are examined, supporting the hypothesis of an enhanced median volume diameter over open ocean compared to clouds formed over the sea ice. The comprehensive data set on microphysical cloud properties enhances our understanding of cloud formation and mixed phase cloud processes over the Arctic ocean, it can be used to validate remote sensing retrievals and models and helps to assess the role of clouds for stronger impact of climate change in the Arctic. </p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call