Abstract
Process variations as a percentage of nominal delay and power consumption are becoming more and more severe with continuing scaling of VLSI technology. The worsening process variation causes increased variability in performance, power, and reliability of VLSI circuits. Thus, performance and power consumption targets obtained during the design phase of VLSI circuits may significantly deviate from that of actual silicon resulting in significant yield losses. Adaptive body bias (ABB) has been shown to be an effective method of postsilicon tuning to reduce variability under the presence of process variation. Post silicon tuning can also be accomplished by using adaptive supply voltage (ASV). This paper compares the effectiveness of ABB and ASV in reducing variability and improving performance and power, and thus, yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.