Abstract

The increased soil loss in an agricultural watershed raises challengers for river water quality and a reliable automated monitoring for suspended sediment concentrations (SSC) is crucial to evaluate sediment budgets variation in systems. The aims of this study were (1) to test if an acoustic doppler current profiler (ADCP) would give similar results to turbidity probe measurements as a high frequency monitoring tool for suspended sediment; and (2) to analyze the relationship between sediment drivers and SSC in a typical agricultural drainage basin. The acoustic and optical backscatter sensors were used to collect SSC data during the ice-free seasons of four consecutive years in the Dunk River (PEI, Canada). The slopes of the relationships between the two SSC indirect measurements were not significantly different than 1. Correlations between SSC and hydro-meteorological variables showed that the high SSC values were more associated with the streamflow and water velocity than precipitation. This study highlighted the great potential of ADCP for the continuous monitoring of suspended sediment in an agricultural watershed. For summer periods the prevalence of clockwise hysteresis (74.1% of measured rainstorm events with SSC > 25 mg L−1) appeared related to rainstorm behaviors.

Highlights

  • River water quality and ecosystem integrity are often threatened by human activities [1,2]

  • The Dunk River is situated in the central portion of Prince Edward Island (Canada) and flows into the Bedeque Bay that empties into the Northumberland Strait in the Southern Gulf of St

  • The suspended sediment concentrations (SSC) calculated from data recorded using a sentinel V-acoustic doppler current profiler (ADCP) and an YSI 6136 turbidity probe using established calibration curves did not differ from a slope of 1 for the four studied years

Read more

Summary

Introduction

River water quality and ecosystem integrity are often threatened by human activities [1,2]. Rivers within agricultural watersheds can be impacted by erosion that leads to a high level of turbidity and an increase of the sediment-associated pollutant load originating from the drainage basin. This in turn, may result in damage to aquatic flora and fauna [3,4]. Water resource protection strategies need to include in situ measurement protocols for detecting changes in suspended sediment concentration (SSC) in order to evaluate remedial actions. A cost-effective and reliable automated sampling or monitoring strategy for SSC is essential to develop sediment budgets in systems. Optical backscatter sensors (OBS), and more recently acoustic backscatter sensors, are indirect SSC monitoring techniques suitable for continual monitoring that

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.