Abstract

Heterogeneous catalytic epoxidation of propene to propene oxide with hydrogen peroxide was investigated in a monolith and a confined Taylor flow (CTF) reactor in which titanium silicalite (TS-1) catalyst was coated on the walls. The influence of gas and liquid superficial velocity on the hydrodynamic characteristics of the monolith and CTF reactor was also investigated under Taylor flow regime at atmospheric and high pressure. The reactors showed distinctly different hydrodynamic properties which in turn led to different performance for propene epoxidation. The production rate of propene oxide was higher in the monolith reactor due to its larger catalyst coating area, larger mass-transfer surface area and more frequent recycling of liquid flow. A variation of reactor column structures confirmed that the propene oxide production was highly dependent on the catalyst coating area and cross-sectional area of the reactor column. High operating pressure made a significant impact on the length of Taylor bubbles and the propene oxide production rate was found to increase in proportion to the operating pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.