Abstract

The utilization of plants to produce metal oxide nanoparticles has recently received a lot of attention due to its ease of usage and environmental friendliness. Therefore, the aim of this study was to synthesize CuO NPs using two distinct methods, including an aqueous extract of moringa oleifera leaves (M-CuO NPs) and a synthetic approach (S-CuO NPs). Nanoparticles produced were evaluated by SEM, EDX, TEM and XRD, to consider the creation of CuO NPs and to determine the morphological, elemental constitution and size the samples. The average particles size 14.95 and 35.73 nm for S-CuO and M-CuO NPs, respectively, is having potentials for application as inhibitor in corrosion of MS. The inhibition and adsorption properties of prepared M-CuO NPs and S-CuO NPs on MS in 1 M HCl were investigated using the wt reduction assessment. The maximal IE of prepared M-CuO NPs and S-CuO NPs was 95.06% and 92.10%, respectively, at 1000 ppm. The IE % improves with greater concentration of the prepared M-CuO NPs and S-CuO NPs. According to the findings, M-CuO NPs are the most effective green potential inhibitor for MS in acidic conditions. It is demonstrated that the Langmuir isotherms are obeyed by the produced CuO NPs and MS substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.