Abstract
Landslides endanger lives and public infrastructure in mountainous areas. Monitoring landslide traces in real-time is difficult for scientists, sometimes costly and risky because of the harsh terrain and instability. Nowadays, modern technology may be able to identify landslide-prone locations and inform locals for hours or days when the weather worsens. This study aims to propose indicators to detect landslide traces on the fields and remote sensing images; build deep learning (DL) models to identify landslides from Sentinel-2 images automatically; and apply DL-trained models to detect this natural hazard in some particular areas of Vietnam. Nine DL models were trained based on three U-shaped architectures, including U-Net, U2-Net, and U-Net3+, and three options of input sizes. The multi-temporal Sentinel-2 images were chosen as input data for training all models. As a result, the U-Net, using an input image size of 32 × 32 and a performance of 97 % with a loss function of 0.01, can detect typical landslide traces in Vietnam. Meanwhile, the U-Net (64 × 64) can detect more considerable landslide traces. Based on multi-temporal remote sensing data, a different case study in Vietnam was chosen to see landslide traces over time based on the trained U-Net (32 × 32) model. The trained model allows mountain managers to track landslide occurrences during wet seasons. Thus, landslide incidents distant from residential areas may be discovered early to warn of flash floods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have