Abstract
Biochar-derived organic matter (BDOM) plays an important role in determining biochar's application potential in soil remediation. However, little is known about the physicochemical properties of BDOM and its sorption of hydrophobic organic compounds (HOCs). Humic acids (HAs) were extracted from oxidized biochars produced from plant straws and animal manures at 450 °C, and their sorption of phenanthrene, a representative of HOCs, was investigated. The organic carbon recovery of biochar-derived HAs (BDHAs) was 13.9-69.3%. The 13C NMR spectra of BDHAs mainly consisted of aromatic and carboxylic C, while those of soil-derived HAs (SDHAs) contained abundant signals in aliphatic region. BDHAs and SDHAs had comparable CO2 cumulative surface areas. BDHAs were found to exhibit higher phenanthrene sorption than SDHAs. After the removal of amorphous aromatic components, the logKoc values of BDHAs were significantly decreased, implying that amorphous aromatic C regulated phenanthrene sorption by BDHAs. In contrast, aliphatic moieties dominated phenanthrene sorption by SDHAs, as evidenced by the enhanced sorption after the removal of amorphous aromatics. This study clearly demonstrated the contrasting characteristics and sorption behaviors of BDHA and SDHA, indicating that biochar addition and subsequent weathering could greatly affect native organic matter properties and the fate of HOCs in biochar-amended soils.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have