Abstract

Harvesting bone for autologous grafting is a daily problem encountered by craniofacial and oral surgeons. Stem cells derived from human dental pulp are able to differentiate in osteoblasts and are a potential source of autologous bone produced in vitro. However, as stem cells are characterized by self-renewing and commitment in several cellular subtypes (ie, pluripotential differentiation), some concerns may arise as regards their potential uncontrolled proliferation. To screen the behavior of osteoblasts derived from human pulpar stem cells (ODHPSCs), we used microarray techniques to identify genes that are differently regulated in ODHPSC in comparison to normal osteoblasts (NOs). Osteoblasts derived from human pulpar stem cells were obtained from human dental pulp, and cells were selected using a cytometer. The cell profile was c-kit+/CD34+/STRO-1+/CD45-. These cells were capable of differentiation of osteoblasts in vitro. By using DNA microarrays containing 19,200 genes, we identified in ODHPSC some genes whose expression was significantly up- and downregulated compared to NO. The differentially expressed genes have different functional activities: (a) cell differentiation, (b) developmental maturation, (c) cell adhesion, and (d) production of cytoskeleton elements. Thus, some molecular differences exist between NO and ODHPSC, although the previously considered histologic parameters show a normal phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.