Abstract

Computer simulations of steel microstructural development provide a powerful tool, which can form the basis of mechanical property predictions. However, in order to create detailed understanding of the factors affecting the properties, the model should predict microstructural evolution during cooling. The present study compares the results of cellular automata simulations with experimental data for two distinct austenite conditions, recrystallized and deformed. Detailed microstructural features were studied using a laser scanning confocal microscope, FESEM and FESEM-EBSD. The two-dimensional cellular automata (CA) model for simulating the formation of lath martensite was parameterized using fitted Johnson-Mehl-Avrami-Kolmogorov and Koistinen-Marburger equations. The parent austenite microstructure for the CA model was determined from the final martensitic microstructure using austenite grain reconstructions based on the use of MATLAB software and the MTEX toolbox. The results of this cellular automata simulation can be used to estimate the shapes and sizes of martensite blocks, which offers new possibilities for the qualitative estimation of the mechanical properties of high-strength steels formed from recrystallized or deformed austenite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.