Abstract

Tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) can act as a persistent groundwater contamination source for decades. Biologically enhanced dissolution of pure PCE DNAPL has potential for reducing DNAPL longevity as indicated previously (Environ. Sci. Technol. 2000, 34, 2979). Reported here are expanded studies to evaluate donor substrates that offer different remediation strategies for bioenhanced DNAPL dissolution, including pentanol (soluble substrate, fed continuously), calcium oleate (insoluble substrate, placed in column initially by alternate pumping of sodium oleate and calcium chloride), and olive oil (mixed with PCE and placed in column initially). Compared with a no-substrate column control, the DNAPL dissolution rate was enhanced about three times when directly coupled with biological transformation. The major degradation product formed was cDCE, but significant amounts of VC and ethene were also found with some columns. Extensive methanogenesis, which reduced PCE transformation, occurred in both the pentanol-fed and oleate-amended columns, but not in the olive-oil-amended column, suggesting that methanogens managed to colonize column niches where PCE DNAPL was not present. Detrimental methane production in the pentanol-fed column was nearly eliminated by presaturating the feed solution with PCE. These results suggest potential DNAPL remediation strategies to enhance dehalogenation while controlling competitive methanogenic utilization of donor substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call