Abstract

The active magnetic regenerator (AMR) refrigeration system represents an environmentally attractive alternative to vapour-compression refrigeration. This paper compares the results of two numerical AMR models: (1) a 1D finite difference model and (2) a 2D finite element model. Both models simulate a reciprocating AMR and can determine the cyclical steady-state temperature profile of the system as well as performance parameters such as the refrigeration capacity, the work input and the coefficient of performance (COP). The models are used to analyse an AMR with a regenerator made of flat parallel plates of gadolinium operating in the presence of a 1 T magnetic field. The results are used to discuss under which circumstances a 1D model is insufficient and a 2D model is necessary. The results indicate that when the temperature gradients in the AMR perpendicular to the flow are small a 1D model obtains accurate results of overall results such as the refrigeration capacity but that a 2D model is required for a detailed analysis of the phenomena occurring inside the AMR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call