Abstract

BackgroundStudies on the rhizosphere microbiome of various plants proved that rhizosphere microbiota carries out various vital functions and can regulate the growth and improve the yield of plants. However, the rhizosphere microbiome of commercial blueberry was only reported by a few studies and remains elusive. Comparison and interpretation of the characteristics of the rhizosphere microbiome of blueberry are critical important to maintain its health.ResultsIn this study, a total of 20 rhizosphere soil samples, including 15 rhizosphere soil samples from three different blueberry varieties and five bulk soil samples, were sequenced with a high-throughput sequencing strategy. Based on these sequencing datasets, we profiled the taxonomical, functional, and phenotypic compositions of rhizosphere microbial communities for three different blueberry varieties and compared our results with a previous study focused on the rhizosphere microbiome of blueberry varieties. Our results demonstrated significant differences in alpha diversity and beta diversity of rhizosphere microbial communities of different blueberry varieties and bulk soil. The distribution patterns of taxonomical, functional, and phenotypic compositions of rhizosphere microbiome differ across the blueberry varieties. The rhizosphere microbial communities of three different blueberry varieties could be distinctly separated, and 28 discriminative biomarkers were selected to distinguish these three blueberry varieties. Core rhizosphere microbiota for blueberry was identified, and it contained 201 OTUs, which were mainly affiliated with Proteobacteria, Actinobacteria, and Acidobacteria. Moreover, the interactions between OTUs of blueberry rhizosphere microbial communities were explored by a co-occurrence network of OTUs from an ecological perspective.ConclusionsThis pilot study explored the characteristics of blueberry’s rhizosphere microbial community, such as the beneficial microorganisms and core microbiome, and provided an integrative perspective on blueberry’s rhizosphere microbiome, which beneficial to blueberry health and production.

Highlights

  • Studies on the rhizosphere microbiome of various plants proved that rhizosphere microbiota carries out various vital functions and can regulate the growth and improve the yield of plants

  • We focused on the following scientific questions: (i) How does the microbial diversity differ between rhizosphere microbial communities of different blueberry varieties? (ii) What are the differences in taxonomical, functional, and phenotypic compositions between rhizosphere microbial communities of different blueberry varieties? (iii) What is the core microbiota of rhizosphere microbial communities in blueberry? (iv) How are the co-occurrence relationships between the microbiota in different blueberry varieties? Notably, our study aims to compare and interpret the characterization of the blueberry rhizosphere microbial community and explore the patterns of the blueberry rhizosphere microbial community, which could provide an integrative view on the blueberry rhizosphere microbiome and provide insights on keeping blueberry health to improve the production of blueberry

  • The alpha diversities of rhizosphere microbial communities were compared between three blueberry varieties and bulk soil samples using the number of operational taxonomic units (OTUs), Shannon index, and Simpson index (Fig. 1a–c)

Read more

Summary

Introduction

Studies on the rhizosphere microbiome of various plants proved that rhizosphere microbiota carries out various vital functions and can regulate the growth and improve the yield of plants. Rhizosphere microbiota carries out various vital functions and plays a critical role in biogeochemical cycles involving soil formation and carbon cycling [1]. Understanding the taxonomical and functional compositions of the rhizosphere microbial community is beneficial to plants’ growth and yield. The current studies on the rhizosphere microbiome are primarily on model plants, and relatively few studies related to blueberry have been carried out to explore the taxonomical and functional compositions of the blueberry rhizosphere microbial community [18], especially for the rhizosphere microbiome of different blueberry varieties [19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.