Abstract

ABSTRACTSatellite-based wetland mapping faces challenges due to the high spatial heterogeneity and dynamic characteristics of seasonal wetlands. Although normalized difference vegetation index (NDVI) time series (NTS) shows great potential in land cover mapping and crop classification, the effectiveness of various NTS with different spatial and temporal resolution has not been evaluated for seasonal wetland classification. To address this issue, we conducted comparisons of those NTS, including the moderate-resolution imaging spectroradiometer (MODIS) NTS with 500 m resolution, NTS fused with MODIS and Landsat data (MOD_LC8-NTS), and HJ-1 NDVI compositions (HJ-1-NTS) with finer resolution, for wetland classification of Poyang Lake. Results showed the following: (1) the NTS with finer resolution was more effective in the classification of seasonal wetlands than that of the MODIS-NTS with 500-m resolution and (2) generally, the HJ-1-NTS performed better than that of the fused NTS, with an overall accuracy of 88.12% for HJ-1-NTS and 83.09% for the MOD_LC8-NTS. Future work should focus on the construction of satellite image time series oriented to highly dynamic characteristics of seasonal wetlands. This study will provide useful guidance for seasonal wetland classification, and benefit the improvements of spatiotemporal fusion models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.