Abstract

This study focuses on unstructured TVD, ENO and UNO schemes applied to solve the Euler equations in two- and three-dimensions. They are implemented on a finite volume context and cell centered data base. The algorithms of Yee, Warming and Harten 1982; Harten; Yee and Kutler; Yee Warming and Harten 1985; Yee; Yee and Harten; Harten and Osher; Yang 1990, Hughson and Beran; Yang 1991; and Yang and Hsu are implemented to solve such system of equations in two- and three-dimensions. All schemes are flux difference splitting and good resolution is expected. This study deals with calorically perfect gas model and in so on the cold gas formulation has been employed. Two problems are studied, namely: the transonic convergent-divergent symmetrical nozzle, and the supersonic ramp. A spatially variable time step is implemented to accelerate the convergence process. The results highlights the excellent performance of the Yang 1990 TVD scheme, yielding an excellent pressure distribution at the two-dimensional nozzle wall, whereas the Harten and Osher scheme yields accurate values to the angle of the oblique shock wave and the best wall pressure distributions in the two-dimensional ramp problem. On the other hand, the excellent performance of the Harten scheme in the three-dimensional nozzle problem, yielding an excellent pressure distribution at the nozzle wall, and the Yee and Harten scheme yielding an accurate value to the angle of the oblique shock wave and the best wall pressure distribution in the three-dimensional ramp problem are of good quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call