Abstract
In this study, the following total variation diminishing (TVD) schemes for solving the Navier-Stokes equations have been tested: the Chakravarthy and Szema (1985) upwind biased TVD scheme, the Harten's upwind TVD scheme described by Yee et al. (1983), and the Yee's (1985) symmetric TVD scheme. The schemes have been compared using three test cases. The first case was the one-dimensional shock tube problem which tested the shock-capturing abilities of the schemes. Chakravarthy's and Harten's schemes gave similar results which were found to be more accurate than the results from Yee's scheme. The second case was a compressible boundary layer which tested the schemes's abilities to solve fiscous flows. In this case, the three schemes yielded almost identical results. Finally, the shock/boundary-layer interaction case studied experimentally by Hakkinen et al. (1959) was computed. Here, Chakravarthy's and Yee's schemes compared most favorably with the published data, with Yee's scheme giving slightly better results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.