Abstract
A proper log-rank test for comparing two waiting (i.e. sojourn, gap) times under right censored data has been absent in the survival literature. The classical log-rank test provides a biased comparison even under independent right censoring since the censoring induced on the time since state entry depends on the entry time unless the hazards are semi-Markov. We develop test statistics for comparing K waiting time distributions from a multi-stage model in which censoring and waiting times may be dependent upon the transition history in the multi-stage model. To account for such dependent censoring, the proposed test statistics utilize an inverse probability of censoring weighted (IPCW) approach previously employed to define estimators for the cumulative hazard and survival function for waiting times in multi-stage models. We develop the test statistics as analogues to K-sample log-rank statistics for failure time data, and weak convergence to a Gaussian limit is demonstrated. A simulation study demonstrates the appropriateness of the test statistics in designs that violate typical independence assumptions for multi-stage models, under which naive test statistics for failure time data perform poorly, and illustrates the superiority of the test under proportional hazards alternatives to a Mann–Whitney type test. We apply the test statistics to an existing data set of burn patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.