Abstract
Wearable devices increasingly incorporate vibrotactile feedback notifications to users, which are limited by the frequency-dependent response characteristics of the low-cost actuators that they employ. To increase the range and type of information that can be conveyed to users via vibration feedback, it is crucial to understand user perception of vibration cue intensity across the narrow range of frequencies that these actuators operate. In this paper, we quantify user perception of vibration cues conveyed via a linear resonant actuator embedded in a bracelet interface using two psychophysical experiments. We also experimentally determine the frequency response characteristics of the wearable device. We then compare user perceived intensity of vibration cues delivered by the bracelet when the cues undergo frequency-specific amplitude modulation based on user perception compared to modulation based on the experimental or manufacturer-reported characterization of the actuator dynamic response. For applications in which designers rely on user perception of cue amplitudes across frequencies to be equivalent, it is recommended that a perceptual calibration experiment be conducted to determine appropriate modulation factors. For applications in which only relative perceived amplitudes are important, basing amplitude modulation factors on manufacturer data or experimentally determined dynamic response characteristics of the wearable device should be sufficient.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.