Abstract

Wearable haptic technology plays a key role to enhance the feeling of immersion in virtual reality, telepresence, telehealth and entertainment systems. This work presents a wearable fingertip capable of providing touch, sliding and vibration feedback while the user interacts with virtual objects. This multimodal feedback is applied to the human fingertip using an array of servo motors, a coin vibration motor and 3D printed components. The wearable fingertip uses a 3D printed cylinder that moves up and down to provide touch feedback, and rotates in left and right directions to deliver sliding feedback. The direction of movement and speed of rotation of the cylinder are controlled by the exploration movements performed by the user hand and finger. Vibration feedback is generated using a coin vibration motor with the frequency controlled by the type of virtual material explored by the user. The Leap Motion module is employed to track the human hand and fingers to control the feedback delivered by the wearable device. This work is validated with experiments for exploration of virtual objects in Unity. The experiments show that this wearable haptic device offers an alternative platform with the potential of enhancing the feeling and experience of immersion in virtual reality environments, exploration of objects and telerobotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.