Abstract

The properties of the amyloid-beta peptide that lead to aggregation associated with Alzheimer's disease are not fully understood. This study aims at identifying conformational differences among four variants of full-length Abeta42 that are known to display very different aggregation properties. By extensive all-atom Monte Carlo simulations, we find that a variety of beta-sheet structures with distinct turns are readily accessible for full-length Abeta42. In the simulations, wild type (WT) Abeta42 preferentially populates two major classes of conformations, either extended with high beta-sheet content or more compact with lower beta-sheet content. The three mutations studied alter the balance between these classes. Strong mutational effects are observed in a region centered at residues 23-26, where WT Abeta42 tends to form a turn. The aggregation-accelerating E22G mutation associated with early onset of Alzheimer's disease makes this turn region conformationally more diverse, whereas the aggregation-decelerating F20E mutation has the reverse effect, and the E22G/I31E mutation reduces the turn population. Comparing results for the four Abeta42 variants, we identify specific conformational properties of residues 23-26 that might play a key role in aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call