Abstract

This study aims to explore the prokaryotic microbial community structures and diversity in pit mud from different depths, and provide a theoretical basis for the liquor production and further study of pit mud. The fermented pit muds of strong-flavor liquor from Yun distillery were taken as samples. The high-throughput sequencing approach, followed by bioinformatics analyses, was used to compare the differences in the prokaryotic microbial community between pit walls and bottom represented by samples. A total of 31 bacteria phyla and 2 archaea phyla were detected. The dominant phyla in YJ-S, YJ-Z, and YJ-X (sample name) were Proteobacteria and Firmicutes, while the dominant genera in them were Acinetobacter, Aminobacterium, and Lactobacillus. YJ-Z and YJ-X were the closest in species diversity. In species richness analysis, YJ-X was the highest, followed by YJ-Z, and YJ-S was the lowest; in species uniformity analysis, YJ-S was the highest, followed by YJ-Z, and YJ-X was the lowest. The function predicted by 16S rRNA genome showed that prokaryotic microbial function in pit mud was mainly concentrated in "Carbohydrate transport and metabolism" and "Amino acid transport and metabolism." Significant differences in prokaryotic microbial community and gene function prediction between pit walls and bottom were found in YJ-S, YJ-Z, and YJ-X (p < 0.05).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call