Abstract

The aim of this study is to assess the feasibility of compressed sensing (CS) acceleration methods compared to conventional segmented cine (Seg) cardiac magnetic resonance (CMR) for evaluating left ventricular (LV) function and strain by feature tracking (FT). In this prospective study, 45 healthy volunteers underwent CMR imaging used Seg, threefold (CS3), fourfold (CS4), and eightfold (CS8) CS acceleration. Cine images were scored for quality (1-5 scale). LV volumetric and functional parameters and global longitudinal (GLS), circumferential (GCS), and radial strains (GRS) were quantified. LV volumetric and functional parameters exhibited no differences between Seg and all CS cines (all P > 0.05). The strains were similar for Seg, CS3, and CS4 (all P > 0.05). Similarly, no significant differences were observed in GRS and GCS between Seg and CS8 (all P > 0.05), but the global longitudinal strain was significantly lower for CS8 versus Seg (P < 0.001). Image quality declined with CS acceleration, especially in long-axis views with CS8. CS cine MRI at acceleration factor 4 maintained good image quality and accurate measurements of LV function and strain, although there was a slight reduction in the quality of long-axis images and GLS with CS8. CS acceleration up to a factor of 4 enabled fast CMR evaluations, making it suitable for clinical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call