Abstract

Standard Bonner spheres and proposed high-sensitivity Bonner cylinders were calibrated in a neutron calibration room, using a (252)Cf source. The Bonner sphere system consists of 11 polyethylene (PE) spheres of various diameters and 4 extended spheres that comprise embedded metal shells. Similar to the design of Bonner spheres, a set of Bonner cylinders was assembled using a large cylindrical (3)He tube as the central probe, which was wrapped using various thicknesses of PE. A layer of lead was employed inside one of the PE cylinders to increase the detection efficiency of high-energy neutrons. The central neutron probe used in the Bonner cylinders exhibited an efficiency of ∼17.9 times higher than that of the Bonner spheres. However, compared with the Bonner spheres, the Bonner cylinders are not fully symmetric in their geometry, exhibiting angular dependence in their responses to incoming neutrons. Using a series of calculations and measurements, this study presents a systematic comparison between Bonner spheres and cylinders in terms of their response functions, detection efficiencies, angular dependences and spectrum unfolding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.