Abstract

AbstractThe forward-flank convergence boundary (FFCB) in supercells has been well documented in many observational and modeling studies. It is theorized that the FFCB is a focal point fore baroclinic generation of vorticity. This vorticity is generally horizontal and streamwise in nature, which can then be tilted and converted to mid-level (3-6 km AGL) vertical vorticity. Previous modeling studies of supercells often show horizontal streamwise vorticity present behind the FFCB, with higher resolution simulations resolving larger magnitudes of horizontal vorticity. Recently, studies have shown a particularly strong realization of this vorticity called the streamwise vorticity current (SVC). In this study, a tornadic supercell is simulated with the Bryan Cloud Model at 125-m horizontal grid spacing, and a coherent SVC is shown to be present. Simulated range-height indicator (RHI) data show the strongest horizontal vorticity is located on the periphery of a steady-state Kelvin-Helmholtz billow in the FFCB head. Additionally, similar structure is found in two separate observed cases with the Texas Tech University Ka-band (TTUKa) mobile radar RHIs. Analyzing vorticity budgets for parcels in the vicinity of the FFCB head in the simulation, stretching of vorticity is the primary contributor to the strong streamwise vorticity, while baroclinic generation of vorticity plays a smaller role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call