Abstract

Celiac disease (CD) is a disease of the small intestine that occurs in genetically susceptible subjects triggered by the ingestion of cereal gluten proteins for which the only treatment is strict adherence to a life-long gluten-free diet. Barley contains four gluten protein families, and the existence of barley genotypes that do not accumulate the B-, C-, and D-hordeins paved the way for the development of an ultralow gluten phenotype. Using conventional breeding strategies, three null mutations behaving as recessive alleles were combined to create a hordein triple-null barley variety. Proteomics has become an invaluable tool for characterization and quantification of the protein complement of cereal grains. In this study multiple reaction monitoring (MRM) mass spectrometry, viewed as the gold standard for peptide quantification, was compared to the data-independent acquisition strategy known as SWATH-MS (sequential window acquisition of all theoretical mass spectra). SWATH-MS was comparable (p < 0.001) to MRM-MS for 32/33 peptides assessed across the four families of hordeins (gluten) in eight barley lines. The results of SWATH-MS analysis further confirmed the absence of the B-, C-, and D-hordeins in the triple-null barley line and showed significantly reduced levels ranging from <1% to 16% relative to wild-type (WT) cv Sloop for the minor γ-hordein class. SWATH-MS represents a valuable tool for quantitative proteomics based on its ability to generate reproducible data comparable with MRM-MS, but has the added benefits of allowing reinterrogation of data to improve analytical performance, ask new questions, and in this case perform quantification of trypsin-resistant proteins (C-hordeins) through analysis of their semi- or nontryptic fragments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.