Abstract
This paper presents an evaluation of several GNSS multicarrier ambiguity (MCAR) resolution techniques for the purpose of attitude determination of low earth orbiting satellites (LEOs). It is based on the outcomes of the study performed by the University of Calgary and financed by the European 6th Framework Programme for Research and Development as part of the research project PROGENY. The existing MCAR literature is reviewed and eight possible variations of the general MCAR processing scheme are identified based on two possible options for the mathematical model of the float solution, two options for the estimation technique used for the float solution, and finally two possible options for the ambiguity resolution process. The two most promising methods, geometry‐based filtered cascading and geometry‐based filtered LAMBDA, are analysed in detail for two simulated users modelled after polar orbiting LEOs through an extensive covariance simulation. Both the proposed Galileo constellation and Galileo used in conjunction with the GPS constellation are tested and results are presented in terms of probabilities of correct ambiguity resolution and float and fixed solution baseline accuracies. The LAMBDA algorithm is shown to outperform the cascading method, particularly in the single‐frequency dual‐GNSS system case. Secondly, more frequencies and multiple GNSS always offer improvement, but the single‐frequency dual‐system case is found to have similar performance to the dual‐frequency single‐system case.
Highlights
PROGENY (PROvision of Galileo Expertise, Networking and support for International Initiatives) is a research and technological development project launched by the European GNSS Supervisory Authority (GSA), in the frame of the 6th Framework Programme
This paper presents the results of the study performed by the University of Calgary Department of Geomatics Engineering related to the definition of a method for low earth orbiting satellites (LEOs) satellite attitude determination, using Multiple Carrier Ambiguity Resolution (MCAR)
The effectiveness of two approaches to multiplefrequency carrier phase ambiguity resolution was evaluated for case of attitude determination onboard a low-earth orbiting satellite
Summary
PROGENY (PROvision of Galileo Expertise, Networking and support for International Initiatives) is a research and technological development project launched by the European GNSS Supervisory Authority (GSA), in the frame of the 6th Framework Programme. The first three steps are identical to the process of carrier-phase GNSS positioning without attitude determination. The difference is that for attitude determination the baseline(s) being determined connects two or more points on a vehicle with known coordinates in the body frame of the vehicle. This is the process of using the available observations to estimate a real-valued (float) estimate of the carrier phase ambiguities. These ambiguity estimates may, if necessary, be filtered over time in order to reduce their uncertainty
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Navigation and Observation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.