Abstract

Aquaculture is the fastest growing food sector worldwide, mostly driven by a steadily increasing protein demand. In response to growing ecological concerns, life cycle assessment (LCA) emerged as a key environmental tool to measure the impacts of various production systems, including aquaculture. In this review, we focused on farmed salmonids to perform an in-depth analysis, investigating methodologies and comparing results of LCA studies of this finfish family in relation to species and production technologies. Identifying the environmental strengths and weaknesses of salmonid production technologies is central to ensure that industrial actors and policymakers make informed choices to take the production of this important marine livestock to a more sustainable path. Three critical aspects of salmonid LCAs were studied based on 24 articles and reports: (1) Methodological application, (2) construction of inventories, and (3) comparison of production technologies across studies. Our first assessment provides an overview and compares important methodological choices. The second analysis maps the main foreground and background data sources, as well as the state of process inclusion and exclusion. In the third section, a first attempt to compare life cycle impact assessment (LCIA) and feed conversion ratio (FCR) data across production technologies was conducted using a single factor statistical protocol. Overall, findings suggested a lack of methodological completeness and reporting in the literature and demonstrated that inventories suffered from incomplete description and partial disclosure. Our attempt to compare LCA results across studies was challenging due to confounding factors and poor data availability, but useful as a first step in highlighting the importance of production technology for salmonids. In groups where the data was robust enough for statistical comparison, both differences and mean equalities were identified, allowing ranking of technology clusters based on their average scores. We statistically demonstrated that sea-based systems outperform land-based technology in terms of energy demand and that sea-based systems have a generally higher FCR than land-based ones. Cross-study analytics also strongly suggest that open systems generate on average more eutrophying emissions than closed designs. We further discuss how to overcome bottlenecks currently hampering such LCA meta-analysis. Arguments are made in favor of further developing cross-study LCA analysis, particularly by increasing the number of salmonid LCA available (to improve sample sizes) and by reforming in-depth LCA practices to enable full reproducibility and greater access to inventory data.

Highlights

  • Population growth, dietary shifts and resource challenges in capture fisheries and agriculture are driving the development of aquaculture production systems worldwide [1]

  • Large intra-cluster differences observed throughout the four impact categories are due to the variable nature of production systems studied and of life cycle assessment (LCA) methodology applied

  • We review similar species using standardized system boundaries and functional units (FU), LCAs are performed on specific systems, using different feed regimes, varying in time and space, and calculated with adaptive LCA methodology

Read more

Summary

Introduction

Population growth, dietary shifts and resource challenges in capture fisheries and agriculture are driving the development of aquaculture production systems worldwide [1]. By 2050, the global population is expected to reach 9.8 billion [2], and robust economic growth in developing nations is expected to lead to a dietary shift towards higher consumption of meat and dairy [3]. These commodities are known to carry a high environmental burden [4]. Global food production cannot continue to depend on agriculture and capture fisheries to the same degree in the future. Agricultural systems are facing various challenges including decreasing soil fertility and arable land availability [8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call