Abstract

AbstractMetal additive manufacturing (AM) is revered for the design freedom it brings, but is it environmentally better or worse than conventional manufacturing? Since few direct comparisons are published, this study compared AM data from life-cycle assessment literature to conventional manufacturing data from the Granta EduPack database. The comparison included multiple printing technologies for steel, aluminum, and titanium. Results showed that metal AM had far higher CO2 footprints per kg of material processed than casting, extrusion, rolling, forging, and wire drawing, so it is usually a less sustainable choice than these. However, there were circumstances where it was a more sustainable choice, and there was significant overlap between these circumstances and aerospace industry use of metal AM. Notably, lightweight parts reducing embodied material impacts, and reducing use-phase impacts through fuel efficiency. Finally, one key finding was the irrelevance of comparing machining to AM per kg of material processed, since one is subtractive and the other is additive. Recommendations are given for future studies to use more relevant functional units to provide better comparisons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.