Abstract

We consider the following (promise) problem, denoted ED (for Entropy Difference): The input is a pair of circuits, and YES instances (resp., NO instances) are such pairs in which the first (resp., second) circuit generates a distribution with noticeably higher entropy. On one hand we show that any language having a (honest-verifier) statistical zero-knowledge proof is Karp-reducible to ED. On the other hand, we present a public-coin (honest-verifier) statistical zero-knowledge proof for ED. Thus, we obtain an alternative proof of Okamoto's result by which HVSZK: (i.e., honest-verifier statistical zero knowledge) equals public-coin HVSZK. The new proof is much simpler than the original one. The above also yields a trivial proof that HVSZK: is closed under complementation (since ED easily reduces to its complement). Among the new results obtained is an equivalence of a weak notion of statistical zero knowledge to the standard one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.